Effect of high-κgate dielectrics on charge transport in graphene-based field effect transistors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of high- gate dielectrics on charge transport in graphene-based field effect transistors

The effect of various dielectrics on charge mobility in single-layer graphene is investigated. By calculating the remote optical phonon scattering arising from the polar substrates, and combining it with their effect on Coulombic impurity scattering, a comprehensive picture of the effect of dielectrics on charge transport in graphene emerges. It is found that though highdielectrics can strongly...

متن کامل

Effects of impurities on charge transport in graphene field-effect transistors

In order to push the upper frequency limit of high speed electronics further, thereby extending the range of applications, new device technologies and materials are continuously investigated. The 2D material graphene, with its intrinsically extremely high room temperature charge carrier velocity, is regarded as a promising candidate to push the frequency limit even further. However, so far most...

متن کامل

fabrication of new ion sensitive field effect transistors (isfet) based on modification of junction-fet for analysis of hydronium, potassium and hydrazinium ions

a novel and ultra low cost isfet electrode and measurement system was designed for isfet application and detection of hydronium, hydrazinium and potassium ions. also, a measuring setup containing appropriate circuits, suitable analyzer (advantech board), de noise reduction elements, cooling system and pc was used for controlling the isfet electrode and various characteristic measurements. the t...

Changes in major charge transport by molecular spatial orientation in graphene channel field effect transistors.

Changes in major charge transport of graphene channel transistors in terms of the spatial orientation of adsorbed functional molecules were demonstrated. In contrast to the horizontally (physically) bound molecules, the vertically (chemically) bound molecules did not change major charge carriers of graphene channels, revealing the molecular orientation-dependent doping effects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2010

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.82.115452